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Abstract

We define a zeta function of a digraph and lafunction of a symmetric digraph, and
give determinant expressions of them. Furthermore, we give a decomposition formula for the
zeta function of g-cyclic I'-cover of a symmetric digraph for any finite grolipandg € I'.
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1. Introduction

Graphs and digraphs treated here are finite and simplé& etV (G), E(G)) be
a connected graph with vertdx(G) and arc seE (G), andD the symmetric digraph
corresponding t@. Note thatE(G) = E(D). Fore= (u,v) € E(G), leto(e) =u
ands(e) = v. The inverse arc of is denoted by. A path P of length n in D(or G)
is a sequenc® = (vg, v1, ..., Vy—1, U,) Of n + 1 vertices anch arcs(or edges) such
that consecutive vertices share an arc(or edge) (we do not require that all vertices are
distinct). Also,P is called a(vo, v,)-path. We say that a path hashacktracking if a
subsequence of the form. , x, y, x, ... appears. Av, w)-path is called &ycle (or
closed path) if v = w.
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We introduce an equivalence relation between cycles. Such two cggles
(v, ..., vm) andCo = (wy, ..., wy,) are calledequivalent if w; = v; 4 for all j.
Let [C] be the equivalnce class which contains a cyCleLet B" be the cycle
obtained by going times around a cycl®. Such a cycle is called multiple of
B. A cycle Cis said to beeduced if both C andC? have no backtracking. A cyclé
isprimeif C # B” for some other cycl8 andr > 2.

The (Ihara) zeta function of a graphG is defined to be a formal power series of a
variableu, by

ZG.u) = Zow) =] (1 - u'C') g
(1

where[C] runs over all equivalence classes of prime, reduced cycl€ ahd|C|
is the length ofC (see [13)).

Zeta functions of graphs started from zeta functions of regular graphs by lhara [8].
In [8], he showed that their reciprocals are explicit polynomials. A zeta function of a
regular graplG associated to a unitary representation of the fundamental gra@p of
was developed by Sunada[15,16]. Hashimoto [7] treated multivariable zeta functions
of bipartite graphs. Bass [2] generalized the Ihara’s result on the zeta function of a
regular graph to an irregular graph, and showed that its reciprocal is a polynomial.

Theorem 1 (Bass [2]).Let G be a connected graph. Then the reciprocal of the zeta
function of G is given by

Z(G,u) "t = 1 —u?Ldet( — uA(G) + u?(D — 1)),

wherer and A (G) isthe Betti number and the adjacency matrix of G, respectively,
and D = (d;;) isthe diagonal matrix with d;; = degu; (V(G) = {v;, ..., va}).

Stark and Terras [14] gave an elementary proof of Theorem 1, and discussed three
different zeta functions of any graph. Furthermore, various proofs of Bass’s Theorem
were given by Foata and Zeilberger [5], Kotani and Sunada [10]. Mizuno and Sato
[12] obtained a decomposition formula for the zeta function of a regular covering of
a graph.

Foata and Zeilberger [5] gave a new proof of Bass’s Theorem by using the algebra
of Lyndon words. Le be a finite nonempty sek a totally order inX, and X* the
free monoid generated B¥. Then the totally ordex on X derive the lexicographic
order < on X*. A Lyndon word in X is defined to a nonempty word iK* which
is prime, i.e., not the powef of any other word for anyr > 2, and which is also
minimal in the class of its cyclic rearrangements undésee [9]). Letl denote the
set of all Lyndon words irX.

Let B be a square matrix whose entrigg, x')(x, x’ € X) form a set of commut-
ing variables. Ifw = x1x2 - - - x, is @ word inX*, define

B(w) = b(x1, x2)b(x2, x3) . .. b(Xm—1, X)) b (X, X1).
Furthermore, let
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B(L) =[]a-pwy.
leL
The following theorem played a central role in [5].

Theorem 2 (Foata and Zeilberger [5]B(L) = det(l — B).

Foata and Zeilberger[5] gave a short proof of Amitsur’s identity [1] by using
Theorem 2.

Theorem 3 (Amitsur [1]). For square matricesAq, ..., Ag,
det(l — (A1 +---Ag) = Hdet(l —A),
leL

where the product runs over all Lyndon wordsin {1, ...k}, and A; = A;; ---A
forl=iy---ip.

ip

In Section 2, we define a zeta function of a digraph, and give a determinant ex-
pression and an Euler product expression of it. In Section 3, we give a decomposition
formula for the zeta function of g-cyclic I'-cover of a symmetric digraph for any
finite groupI” andg € I'. In Section 4, we introduce dn-function of a symmetric
digraphD, and express it by using the characteristic polynomial of some matrix.
Furthermore, we show that the zeta functiorbak a product oL-functions ofD.

For a general theory of the representation of groups, the reader is referred to [3].

2. Zetafunctionsof digraphs

Let D be a connected digraph, angl, the number of all cycles with lengtinin
D. Then, thezeta function of a digraphD is defined to be a formal power series of a
variableu, by

Nn’l
Zp(u) = exp(z ?u’”) )

m=>1

Let D haven verticesvy, . .., v,. The adjacency matrixA = A(D) = (a;;) of D
is the square matrix of ordersuch that;; = 1 if there exists an arc starting at the
vertexv; and terminating at the vertex, and ¢; = 0 otherwise.

Theorem 4. Let D be a connected digraph. Then the reciprocal of the zeta function
of D isgiven by

Zpw)~t =det—A(Dw) =[] (1 _ um) ,
el
where [C] runs over all equivalence classes of prime cycles of D.
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Proof. Let V(D) = {v1,...,v,} andvy < v2 < --- < v, a totally order ofV (D).
We consider the free monold(D)* generated by (D), and the lexicographic order
on V(D)* derived from<. If a cycle Cis prime, then there exists a unique cycle in
[C] which is a Lyndon word irV (D).
Forw € V(D)*, let
ul®lif wis a prime cycle,
Bw) = {0 otherwise.
Then we have
iy =[Ta-pan =TT (1-u),
leL [C]
where[C] runs over all equivalence classes of prime cycleb oFurthermore, we
define variable®(x, x")(x, x’ € V(D)) as follows:
N ju it (x,x") e E(D),
bix, x) = {O otherwise.
Theorem 2 implies that
I1 (1 . u‘C') — det(I — B) = det(l — uA(D)).
[C]
Since|[C]| = |C| andN,, = tr(A(D)™)(see [4]), we have

H (1 — u‘C|>7l=exp - Z log(1 — uC|))
[C]

(€]

=exp| Y )~ %uc"")

[C] m>1

1 m
=exp Z Z Wulq )

m=1 C

=exp( %u’") :

m>1

Therefore the result follows. O

The formula det(- A(D)u) = [;¢,(1 - ul€ly is also a specialization of Theo-
rem 3.

Recently, Kotani and Sunada [10] treated zeta functions of strongly connected
digraphs. In [10], they stated a connection between zeta functions of graphs and that
of strongly connected digraphs, and gave a new proof of Bass’s Theorem by using
the connection. LeG = (V, E) be a connected non-circuit graph. Then dhiented
linegraph L(G) = (Vi, Er) of Gis defined as follows:
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Vi =E; Ep ={(e1,e2) € E X E | e1 # e2,1(e1) = 0(e2)} .

There exist no reduced cycles in the oriented line graph. Thus, there is a one-
to-one correspondence between prime cyclek(i@) and prime, reduced cycles in
G,and so £ (u) = ZL(é)(“)- Furthermore, this is obtained from Theorem I1.1.5 of
Bass [2].

3. Zetafunctions of cyclic I'-covers

Let D be a symmetric digraph arid a finite group. A functionw : E(D) — I
is calledalternating if «(y, x) = a(x, y)~! for each(x, y) € E(D). For ge I, a
g-cyclic I'-cover D, (@) of D is the digraph defined as follows (see [11]):

V(Dg(a)) = V(D) x I,
and

((v, 1), (w, k) € E(Dg(a))
if and only if (v, w) € E(D) and k tha (v, w) = g.

The natural projection = : D,(a) — D is a function fromV (D, («)) onto V(D)
which erases the second coordinates. A digrBpis called acyclic I'-cover of D if
D' is ag-cyclic I'-cover ofD for someg € I'.

Let G be a graph and’ a finite group. Then a mapping: E(G) — I is called
anordinary voltage assignment if o (v, u) = a(u, v)~1 for each(u, v) € D(G). The
pair (G, «) is called anordinary voltage graph. The derived graphG* of the ordi-
nary voltage grapliG, «) is defined as follows (see [6]):

V(GY) =V(G)xT
and

((v, h), (w, k)) € E(G*)
if and only if (v, w) € E(G) andk = ha(v, w).

Similarly to the case of a cycli€-cover of a symmetric digraph, thetural pro-
jection 7 : G* — G is defined. The graply® is called aderived graph covering
of G with voltages inI" or anI"-covering of G. The pair(D, «) of D anda can be
considered as the ordinary voltage gragih «) of the underlying graptD of D.
Thus the 1-cyclid-cover D1(«) corresponds to thE-coveringD®, where 1 is the
unit of I'.

Now, we give an example. Léd be the symmetric digraph of Fig. 1 ardd=
Z3 =1{0,1, -1} (the additive group). Furthermore, let: E(D) — Z3 be the al-
ternating function such that(1,2) =0, «(2,3) = 1 and«(3,1) = —1. Then the
1-cyclic Z3-cover D1 () is shown in Fig. 2.
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1

Fig. 1. A symmetric digraph.

a,-1)

2,-1) @,-1)
Fig. 2. The 1-cyclicZz-cover Dy («).

The characteristic polynomial @(D; ) of a digraphD is defined by®(D; 1) =
det(Al — A(D)). For a square matri®, we define @(B.) = det(Al — B). The Kro-
necker product A ® B of matricesA andB is considered as the matr having the
elementy;; replaced by the matria; ; B.

Theorem 5. Let D be a connected symmetric digraph, I" a finite group, ¢ € I and
o : E(D) — A analternating function. Furthermore, let p1 = 1, 02, ..., p; bethe
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irreducible representations of I", and f; the degree of p; for each i, where f; = 1.
For h e I', thematrix A, = (ay&?) is defined as follows:

a _ )1 ifa(w,w)=hand (v, w) € E(D),
%w =10 otherwise

Then the reciprocal of the zeta function of the g-cyclic I'-cover D, («) of D is

t fi
Zp, )~ t=det(l — A(D)u) - ]_[ {det(l —u Z pi(h) ® Ahg) }
h

i=2
1 t 1 fi
—nirl . . .
=u ‘D<D, ;)'B{‘D(Xthz(m@Ahg, ;)} .
Proof. By Theorem 4, we have
1
Zp, @)t = det(l — A(Dg(a))u) = u"" <A(Dg(ot)); ;> .
By [11, Theorem 1], it follows that
1 ' 1 fi
Zp,@@ " =u"lld (D; —) 11 {<D (Z pi(h) ® Ang: —) } . O
u i=2 h u
Corollary 1. Zpu)™ | Zp, @)~
For a finite abelian group, let I'"* be the character group 6t

Corollary 2. Let D be a connected symmetric digraph with n vertices, I" a finite
abelian group and « : E(D) — I an alternating function. Then the reciprocal of
the zeta function of the g-cyclic I'-cover D, () of D is

. 1 1
Zpt=u A@(D, ;>. [ (P<Xh:)((h)Ahg, ;>.

x#ler*

Proof. Each irreducible representation bfis a linear representation, and these
constitute the character groupy. By Theorem 5, the result follows. O

For example, we consider the 1-cyclig-cover D1 («) of Fig. 2. By Corollary 2,
we have
Z ey @) =0 ud = 3/u — 2)(L/u® — 3¢ Ju — 2)(L/u® — 3% /u — 2)
=u®Q/u® = 3/u—2)1/u® + 3/u* — 4/u® + 9/u® — 6/u + 4)
=1—6u®— 1548 — 84°,
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where¢ = (—1+ +/—3)/2. Thus

109Z p, (@) () = — log(1 — u3(6 + 154° + 8u°))
=6u° +33u° + 1700 + - - -

Some values oN,, are given as follows:
N3 =18, Ng =198, Ny = 1530, ... and N, = 0 (m # Omod 3).

4. L-functions of symmetric digraphs

Let D be a connected symmetric digragha finite group andx : E(D) — I
an alternating function. Furthermore, letbe an irreducible representation bf
andg € I'. Then we define the functiom, : E(D) — I as follows:a, (v, w) =
a(v, w)g~ L, (v, w) € E(D). For each path? = (vy,...,v) of D, let og(P) =
a(vy,v2)g - a(y—1, v)g L

Form > 1, let%,, be the set of all cycles of lengthin D. Set

Nu = > tr(p(ag(C))).
Cebm
Then, thel-function of D associated t@, « andg is defined by

N
Zp(u,p,a,g) = EXD(Z Wmum) .

m>1

Let1< i, j < n.Then,thei, j)-blockB; ; of an fn x fn matrixB is the subm-
atrix of B consisting off(i — 1)+ 1,..., firows andf(j —1)+1,..., fj col-
umns.

Theorem 6. Let D be a connected symmetric digraph with n vertices, I" a finite
group and « : E(D) —> I' an alternating function. Furthermore, let p be an
irreducible representation of I', and f the degree of p. Then the reciprocal of the
L-function of D associated to p, « and g is

Zo, p.a, g)*lzl_[det(l — p(ag(C))u‘C')
(c]

:det(l —uy_ p(h) ®Ahg> .

her

Proof. Atfirst, let
() = [ det( — plag (Cu'D),

€]
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where[C] runs over all equivalence classes of prime cycle®oBy the Jacobi
formula detexpA = exptrA, we have

ﬂ(u)—lzl_[ det exp{— log(l — p(ag(c))ula)}
(€]

=[]expotr| > %p(ag(cm))u’"'cl

m=>1

1
=exp| 3 Y ~tr(p(eg (C"™)u"!C!

[C] m>1

=exp( DD tr<p(ag(C’")>)u”"C'

m=1 C

1
=exp Zn—iNmu’" =Zpu, p,a,g).

m=>=1

Next, letV (D) = {v1, ..., v,} and consider the lexicographic order BiD) x
V(D) derived from a totally order oV (D): vy < v < --- < v,. If (v, v}) is the
mth pair under the above order, then we define thex fn matrix A, =
((An) p,g)1<p.g<n as follows:

(Am)p q =

plag(p,vyNu  if p=i,g=jand(v;,v;) € E(D),
0 otherwise.

Furthermore, leB = A; + - - - A;, k = n2. Then we have

B=u) Ay ®p(h).
h

LetL be the set of all Lyndon words ivi(D) x V(D). Then we can also consider

L as the set of all Lyndon words i, ..., k}: (v, vj,), ..., (i, vj,) corresponds
tomymy, ..., my, where (y,,v;,) (L < r < g) is them,th pair. Theorem 3 implies
that

det(l,; — B) = [ [ det(l — A)).

leL

whereA; = A;, ..., Ai, forl =iy, ...,i,. Note that del — A,) is the alternating
sum of the diagonal minors &;. Thus, we have

det(l— A)) = det(l p(ag (C)ul€ly if I is a prime cycleC,
otherwise.

Therefore, it follows that
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() =det( s —ud A ®p(h) | =det| Ly —u )Y plh) ® Ang
her her
Hence the result is obtained.d

By Theorems 5 and 6, the following result holds.

Corollary 3. Let D be a connected symmetric digraph, I" afinite group, g € I" and
a : E(D) — I an alternating function. Then we have

Zpy@) =[]Zpw, p, . ),
P
where p runs over all irreducible representations of I', and f = degp.

By Theorem 6 and Corollary 2, the following result holds.

Corollary 4. Let D be a connected symmetric digraph, I" a finite abelian group,
geTl'anda : E(D) — I analternating function. Then we have

Zpye@) =[] Zow. x. e ).
xXer*
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